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Nonlocal electron kinetics in a weakly ionized plasma

E. Furkal, A. Smolyakov, and A. Hirose
Department of Physics and Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon,

Saskatchewan, Canada S7N 5E2
~Received 5 February 1998!

Electron dynamics in a time dependent inhomogeneous electric field in a weakly ionized plasma with elastic
electron-neutral collisions is analyzed. We consider the most general ordering when the electron mean free
pathvTe /ne is arbitrary with respect to the characteristic length scalek21 of the electric field, and frequency
v of the electric field is arbitrary with respect to the electron collisional frequencyne ; v;ne;kv t . In this
case the standard two-term approximation is not valid and higher order spherical harmonics in the perturbed
electron distribution function should be taken into account. This results in an infinite hierarchy of coupled
equations for angular harmonics that can be solved in the form of the infinite continued fraction. This method
is easily generalized for a wide class of scattering cross sections with angular dependencies. The developed
approach uniformly describes both local~strongly collisional! and nonlocal regimes. As an example, a closed
form of the perturbed electron distribution function is found for the argon gas with nonmonotic dependence of
the collisional cross section as function of energy~Ramsauer effect!. The conductivity and surface impedance
of a semi-infinite plasma are calculated in different collisionality regimes, and anomalous penetration of the
electric field into such plasma is analyzed. The nonmonotonous behavior of the amplitude of the external
electric field inside of a plasma has been recovered for the nonlocal case (z.1). @S1063-651X~98!06407-1#

PACS number~s!: 51.50.1v, 51.10.1y, 52.20.2j, 52.50.2b
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I. INTRODUCTION

Electron transport in an external electric field in a wea
ionized plasma plays a fundamental role in gas discha
physics and its applications, in particular, for a variety
plasma sources used in science and technology. In
present paper we consider the electron conductivity of a
temperature plasma in a time dependent nonuniform ele
field when the main mechanism of electron scattering is e
tic collisions with neutrals and analyze nonclassical~anoma-
lous! penetration of the electric field into in a situation wh
effects of electron thermal motion are important.

We are interested in a situation when the electron m
free path is not small compared to the characteristic t
scale of the external electric field inhomogeneity, and
electron collisional frequency is not necessary large co
pared to the characteristic frequency of the electric field
cillations. For such conditions effects of the thermal elect
motion become important so that electron conductivity
comes a nonlocal operator both in space and in time@1,2#.
This modifies the mechanism of the electric field penetrat
into a plasma that is no longer local but rather becomes n
local. It is usually referred to as an anomalous skin eff
@3,4#. These effects have been observed experimentall
gas discharges@5,6#. They are becoming increasingly impo
tant as gas discharges for plasma processing and ligh
move toward the lower pressure regimes. In this paper
develop an approach that allows one to uniformly descr
both strongly collisional and collisionless regimes. Such
approach is especially important for the description of
electron transport in inert gases where the differential cr
section of the electron-neutral atom interaction exhibits n
monotonic behavior with the electron energy~the Ramsauer
effect! so that electrons of different energies could be
different collisionality regimes.
PRE 581063-651X/98/58~1!/965~11!/$15.00
e
f
he
w
ic
s-

n
e
e
-
-

n
-

n
n-
t
in

ng
e
e
n
e
s
-

The traditional procedure to solving the Boltzmann k
netic equation for electrons is to expand the electron dis
bution function in a series of spherical functions and th
truncate this representation retaining only a certain num
of terms @7#. This series expansion is equivalent to the e
pansion of the distribution function in the paramet
kv/( iv2n) wherek is the wave number,v is the frequency
of the external electric field,n is the collision frequency, and
v is the electron velocity. Often, the so-called two-term a
proximation @3,8,9# is implemented to solve the Boltzman
equation. The applicability of the two-term expansion to t
problem of the electron conductivity is limited to the ca
when the parameterkvT /( iv2n) is sufficiently small, i.e.,
the electron motion is strongly collisional,n.v, n.kvT , or
the oscillation frequency is large,v.n,v.kvT . In this ap-
proximation, the perturbed distribution function and, resp
tively, the electron conductivity do not depend on the wa
vector k. Thus, the electron conductivity is a local quanti
and does not take into account the thermal electron motio
is worth noting also that the two-term approximation do
not describe higher order moments such as electron heat
which is important for the problem of anomalous heati
@10,11#. The two-term approximation can be further im
proved by including a few more terms in the spherical h
monic expansion@12#. We develop an approach that includ
complete infinite hierarchy of spherical harmonics and
lows one to calculate the perturbed distribution function
arbitrary values of the parameterkv/( iv2n). In present pa-
per we concentrate on the nonlocal effects in the pertur
distribution function due to the external electric field a
neglect effects of inhomogeneity of the equilibrium electr
density due to the equilibrium ambipolar potential. Thus
neglect effects of energy relaxation and associated nonl
effects due to particle trapping in the ambipolar potential
a bounded plasma column@3,9#. The latter effects can be
965 © 1998 The American Physical Society
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966 PRE 58E. FURKAL, A. SMOLYAKOV, AND A. HIROSE
described within the two-term approximation and are
considered in this paper.

Nonlocal electron conductivity and the associated ano
lous skin effect have also been investigated@1,3,13,14# by
solving the Boltzmann kinetic equation with simplified BG
type collisional operator in the form

C~ f !52n~v ! f , ~1!

wheren(v) is the effective collisional frequency. Using E
~1! one can solve the linearized kinetic equation for pert
bations without making the expansion in spherical harm
ics. Such an approximation may be used for electrons of v
low energies where the differential cross section of
electron-atom interaction does not depend on the elec
energy and is isotropic in space. At higher energies of e
trons the cross section of the electron-neutral interaction
comes velocity dependent and anisotropic in space. Th
usually the most typical situation for electron scattering
inert gases with the Ramsauer effect. In this paper we c
sider the realistic case when the differential cross sectio
anisotropic and approximation~1! is not valid. As an ex-
ample we use argon gas where the Ramsauer effect man
itself in a sharp decrease in the magnitude of the trans
cross section as the energy of electrons increases. In th
gion of the minimum energy, the spatial motion of electro
may become important even if it can be neglected for ot
energy ranges.

II. SOLUTION OF THE ELECTRON KINETIC EQUATION
IN THE INHOMOGENEOUS AND TIME DEPENDENT

ELECTRIC FIELD

The Boltzmann kinetic equation for the electron distrib
tion function in a weakly ionized plasma with the extern

FIG. 1. The differential cross section of scattering of an elect
on argon atom vs the scattering angle for different electron e
gies. The solid, dotted, dashed, and dashed-dotted lines repr
the electron energy of 0.1, 1, 5, and 10 eV, respectively.
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time-varying and inhomogeneous electric field is

] f

]t
1v•

] f

]r
2

eE„r ,t)

m
•

] f

]v
5C~ f !. ~2!

HereC is the collisional integral of interaction between ele
trons and atoms given by@15#

C~ f !5E v rel~ f 8 f 182 f f 1!
ds

dV
d3p1dV, ~3!

wherev rel is the relative velocity between electrons and
oms, f , f 1 and f 8, f 18 are the electron and neutral atom di
tribution functions before and after the collision,ds/dV is
the differential cross section of electron-neutral collisions.
the present paper we neglect the electron-electron
electron-ion interactions, since the neutral atom density
considerably higher then that of the electrons and ions.

We neglect the effects of energy transfer between e
trons and atoms because of the large mass difference
tween the two species. Thus atoms are motionless, and
distribution function is given by

f 185 f 15Nd~p1x!d~p1y!d~p1z!, ~4!

whereN is the neutral atom density. Substituting the expr
sion ~4! into ~3! we get

C5NE @ f ~ t,r 8,v8!2 f ~ t,r,v !#v
ds

dV
dV. ~5!

As mentioned above we neglect the effects of spatial d
tribution of the ambipolar potential, so that the electron eq
librium functionF0(v) can be taken in the Maxwellian form
with a uniform density. Under the influence of the extern
electric field, the electron distribution function departs fro

n
r-
ent

FIG. 2. The momentum transfer scattering cross section o
electron on argon versus the electron energy.d: Naskanishiet al.
~Ref. @23#!; —: present results.
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the equilibrium so that the total electron distribution functi
can be represented in the form@7#

f ~v,r,t !5F0~v !1(
l ,m

f l ,m~v !Yl ,m~u,f!ei ~kx2vt !, ~6!

wherev5uvu, f l ,m(v) is a function of the absolute value o
electron velocity,Yl ,m(u,f) is the spherical harmonic func
tion, andF0 is the Maxwellian distribution function. We as

FIG. 3. The effective collision frequenciesn1, n2, andn` versus
the electron energy. The neutral atom density is 1015 cm23. The
solid line representsn1, the dottedn2, and the dashedn` .
sume that the electric field is in thez direction,E5Eẑ, and

its variation is in thex direction,k5kx̂.
Substituting Eq.~6! into Eqs.~5! and ~2!, and expanding

the electric field in Fourier series, one gets in the linear
proximation

FIG. 4. The complete continued fractionH1 computed numeri-
cally and the approximation~A7! as the function of thekv/v pa-
rameter forn1 /v50.1. The solid line: the real part of the comple
continued fractionH1; the dotted line: the real part of the approx
mation ~A7!; the dashed line: the imaginary part of the comple
continued fractionH1; the dashed-dotted line: the imaginary part
the approximation~A7!.
attering
ted
d
with the

ics.
2 iv(
l ,m

f l ,m~v !Yl ,m~u,f!1 ikvsinu cosf(
l ,m

f l ,m~v !Yl ,m~u,f!2
eE~v,k!

m
cosu

]F0

]v
52(

l ,m
n l f l ,m~v !Yl ,m~u,f!,

~7!
wheren l is the l th order collision frequency defined by@7#

n l~v !5NvE @12Pl~cosu!#
ds~v,u!

dV
dV, ~8!

wherePl(cosu) are the Legendre polynomials. If the differential cross section does not depend upon the poloidal sc
angleu, then alln l are equal, except forn0. The characteristic frequencyn0 describes the energy relaxation that is neglec
here due to large mass difference between the electron and neutral atoms. Ifn l5const for alll then there is no need to expan
the electron distribution function in the series of spherical functions and one can solve the Boltzmann kinetic equation
collision term given by Eq.~1!.

If the differential cross section is a function ofu, Eq. ~7! leads to coupled equations for different spherical harmon
Multiplying Eq. ~7! by Yl ,m* (u,f) and integrating over the solid angle we obtain

2 iv f l ,m1
1

2
ikvG l ,m2A4p

3

eE~v,k!

m
d l ,1dm,0

]F0

]v
52n l f l ,m , ~9!

where
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G l ,m5A~ l 2m11!~ l 2m12!

~2l 11!~2l 13!
f l 11,m211A~ l 2m!~ l 2m21!

~2l 11!~2l 21!
f l 21,m112A~ l 1m21!~ l 1m!

~2l 21!~2l 11!
f l 21,m21

2A~ l 1m12!~ l 1m11!

~2l 11!~2l 13!
f l 11,m11 . ~10!

The standard two-term approach consists in retaining in Eq.~9! only the first term,f 10, and neglecting all the higher angula
harmonics. This is justifiable in a strongly collisional limit, but in weakly collisional regimes effects of the higher an
harmonics of the distribution function become important. These effects can be accounted for by a direct solution of the
system~9! for f 1,0(v,k,v) in the form

f 1,0~v,k,v !52A4p

3

eE~v,k!

m

]F0

]v
1

@ iv2n1~v !#H1~v,k,v!
. ~11!

The effects of the higher-order spherical harmonics are included in the continued fraction

Hl~v,k,v!511Cl 11 /~11Cl 12/11Cl 13 /••• !, ~12!

with coefficients

Cl5
~ l 221!k2v2

~4l 221!~ iv2n l !~ iv2n l 21!
. ~13!

The similar method of incorporating of the higher order spherical harmonics was used in@16,17# for the problem of electron-
ion collisions.

To find an expression for the perturbed electron distribution function, one has to calculate the continued
H1(v,k,v), which in turn requires the knowledge of thel th order collision frequenciesn l . If the electron-neutral atom
interaction is of the polarization type, which is assumed in the present paper, then the collision frequencyn l rapidly converges
to a constant value

n`~v !5 lim
l→`

n l~v !. ~14!

In this case the continued fractionH1(v,k,v) can be approximated by~see Appendix A!

H1~v,kv,n!511
2

5

k2v2

~ iv2n2~v !!~ iv2n1~v !!~A11k2v2/~ iv2n`~v !!211!
, ~15!

where

n1~v !5NvE ~12cosu!
ds~v,u!

dV
dV, ~16!

n2~v !5
3

4
NvE ~12cos 2u!

ds~v,u!

dV
dV. ~17!

Substituting Eq.~15! into Eq. ~11! we obtain the expression for the electron perturbed distribution function in the form

f 1,0~k,v,v,u!52
eE~v,k!

m

]F0

]v
cosu

iv2n1~v ! S 11
2

5

k2v2

@ iv2n2~v !#~ iv2n1~v !!~A11k2v2/@ iv2n`~v !#211!
D 21

. ~18!
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In the limit, k5 0 we obtain the local electron distributio
function from Eq.~18!, investigated in Ref.@8#. We have
parametrized the perturbed distribution functionf 1,0 by three
collisional frequenciesn1, n2, andn` . As shown in the next
section, this approximation satisfactorily describes the p
ticular case of electron scattering in the argon gas. The
rametrization~15! can be easily generalized for the arbitra
dependence of the collisional cross sectionds(v,u)/dV,
provided that the condition~14! is satisfied. It is worth noting
that both analytical representation and results of comp
modeling and/or experimental data can be used
ds(v,u)/dV to determine the parametersn1 ,n2, andn` re-
quired for Eq.~18!.

III. EFFECTIVE COLLISIONAL FREQUENCIES
AND RAMSAUER EFFECT IN ARGON

To calculate the perturbed distribution function~18! one
has to specify the form of the collisional integral and th
calculaten l . As noted before, in this paper we consider t
elastic electron-atom polarization interaction as the m
channel of electron scattering. For the incident electron
ergy in the range between 0 and 10 eV, the differential cr
section of the electron-atom interaction can be represente
the form ~B12! ~see Appendix B!. The structure of the en
ergy expansion of phase shifts for the interaction betw

FIG. 5. The complete continued fractionH1 computed numeri-
cally and the approximation~A7! as the function of thekv/v pa-
rameter forn1 /v55. The solid line: the real part of the comple
continued fractionH1; the dotted line: the real part of the approx
mation ~A7!; the dashed line: the imaginary part of the comple
continued fractionH1; the dashed-dotted line: the imaginary part
the approximation~A7!.
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electrons and the neutral polarizable system~atoms! follows
from the so-called modified~atomic! effective range theory
@18#.

The differential cross section~B12! is a function of the
electron velocityv and the scattering angleu. For some
gases~e.g., argon!, the scattering lengthL is negative and the
transport cross sections tr , defined as

s tr
arg

4p
5

1

4pE ~12cosu!ds

5ÂÂ* 1
B̂B̂*

3
1

ĈĈ*

5

2
2

5

pbk

a0
$Â1Â* %1

18pbk

105a0
$B̂1B̂* %

2
2pbk

105a0
$Ĉ1Ĉ* %2

1

3
$ÂB̂* 1Â* B̂%

2
2

15
$B̂Ĉ* 1B̂* Ĉ%1

1

6

p2b2k2

a0
2

~19!

has a minimum atv.vc @19# where

vc52
12\La0

5pmb
. ~20!

The sharp decrease in the transport cross section of e
tron atom interaction is known as the Ramsauer effect. As
example we shall use argon gas for the present calculati
The atomic polarizability and the scattering length of t
argon atom are@18,20# b511.1a0

3, L521.7a0, where a0 is
the Bohr radius, and the coefficientsb l ,g l , j l ~given in Ap-
pendix B! are chosen to fit the experimental data@21# for the
phase shifts in the energy range from 0 to 10 eV. The
gular dependence of the differential cross section for diff
ent energies given by Eq.~B12! is shown in Fig. 1. For the
energy range between 0 and 10 eV, the expression~B12!
gives a very good fit to the differential cross section of t
electron-argon atom interaction that was obtained exp
mentally @22,24,25# and theoretically@22,24,25#.

The transport cross section~19! of electron scattering in
argon as a function of the incident electron energy is sho
in Fig. 2. Using the definition of thel th order collision fre-
quency~8! and ~B12! one obtains
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n l~v !

Nv
54pÂÂ* ~12d l ,0!1

p3b2k2

2a0
2 S 12d l ,01

1

3
d l .1D2

4p2bk

a0
$Â1Â* %S 1

3
1

1

~4l 221!~2l 13!
D 2

4p

3
$ÂB̂* 1Â* B̂%d l .1

1
2p2bk

a0
$B̂1B̂* %S 2

15
2

2~ l 11!

~2l 11!2~2l 15!~2l 13!
2

2l

~2l 11!2~2l 23!~2l 21!
D 14pB̂B̂* S 1

3
2

1

3
d l ,02

2

15
d l ,2D

12pĈĈ* S 2

5
2

2

5
d l ,02

4

35
d l ,22

4

35
d l ,4D2

4p

2
$ÂĈ* 1Â* Ĉ%d l ,222p$B̂Ĉ* 1B̂* Ĉ%S 4

15
d l .11

6

35
d l .3D

2
p2bk

a0
$Ĉ1Ĉ* %S 2

4

105
2

2

~2l 13!~4l 221!
1

6~ l 11!2

~2l 11!2~2l 13!2~2l 21!
D 2

p2bk

a0
$Ĉ1Ĉ* %

3S 6~ l 11!~ l 12!

~2l 11!~2l 13!2~2l 15!~2l 17!
1

6l ~ l 21!

~2l 11!~2l 23!~2l 21!2~2l 25!
1

6l 2

~2l 11!2~2l 21!2~2l 13!
D . ~21!

Figure 3 shows the effective collision frequenciesn1, n2, andn` versus the electron energy. One can see the nonmono
behavior of the effective frequencies with the electron energy, which is typical for the Ramsauer effect. With an explic
for the effective collision frequencies~21! we can readily calculate the continued fractionH1 and subsequently the perturbe
electron distribution function. The approximation~15! reasonably well reproduces the exact continued fraction~12! in the wide
range of collisionality regimes. The comparison of the full continued fraction~12! computed numerically with the approx
mation ~15! is given in Figs. 4 and 5 for different values of the parametern1 / v.

IV. NONLOCAL PLASMA CONDUCTIVITY

The Fourier component of the plasma conductivity is defined from the relation

j ~v,k!52eE vzf 1,0d
3v5s~v,k!E~v,k!. ~22!

Using Eq.~18! one obtains

s~v,k!52
4pne2

3T S m

2pTD 3/2E
0

` v4exp~2mv2/2T!

iv2n1~v ! S 11
2

5

k2v2

@ iv2n2~v !#@ iv2n1~v !#~A11k2v2/~ iv2n`~v !!211!
D 21

dv.

~23!
uc
io

le
a

-
-
th
re
se
f a

e
iv

e of
the

duc-
n

The effective frequencies defined in this paper reprod
well theoretical and experimental data in the energy reg
from 0 to 10 eV. Integration in the expression~23! is done
over the entire velocity region from 0 tò. Since the main
contribution to the integral in Eq.~23! come from velocities
that are close to the thermal, the error introduced by e
trons with energies higher than 10 eV is exponentially sm
for plasmas with electron temperatureTe,10 eV.

The electron plasma conductivitys given by Eq.~23! is a
complicated function ofv andk. Converted back to a con
figuration spacez andt, s(z,t) becomes a nonlocal integro
differential operator in space and time. It means that
conductivity is a function of the rf field throughout the enti
skin layer and as will be shown in the next section it cau
the nonmonotonic behavior of the electric field inside o
plasma.

For the case whenn50, the plasma conductivity can b
easily calculated from the collisionless kinetic equation g
ing

s0~v,k!52
ivpe

2

4pkvT
ZS v

kvT
D , ~24!
e
n

c-
ll

e

s

-

whereZ(x) is the plasma dispersion function

Z~x!5
1

Ap
E

2`

` exp~2t2!

t2x
dt.

In Fig. 6 we compare the exact analytical result~24! obtained
in the collisionless regime with our approximation~23! in the
limit n→0. This comparison demonstrates that Eq.~23! ac-
curately describes the plasma response for a wide rang
the collisionality regimes and a wide range of values of
parameterv/kvT .

The second term in brackets in expression~23! describes
nonlocal effects due to a spatial dependence of the con
tivity operators. One can introduce the following criterio
when the nonlocal effects are important:

z[U k2vT
2

~ iv2n2!~ iv2n1!$@11k2vT
2/~ iv2n`!2#1/211%

U.1.

~25!

Qualitatively we can assume thatn15n25 n` . Then expres-
sion ~25! can be rewritten as
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k2vT
2

v21n1
2
.@11k2vT

2/~v21n1
2!#1/211. ~26!

Introducing a parameterh

h5
k2vT

2

v21n1
2

~27!

one obtains from Eq.~26!

h.~11h!1/211. ~28!

Thus the nonlocal effects are important for

h.1 ~29!

or

h5
k2vT

2

v21n1
2
.1. ~30!

The characteristic wave vectork can be approximated by th
inverse skin depth in the local case

k5d215Re~4p ivs/c2!1/2, ~31!

wheres is the local conductivity. By using the classical loc
expression for the electron conductivity

s5
vp

2

4p~n2 iv!
, ~32!

FIG. 6. The collisionless plasma conductivity~24! and plasma
conductivity ~23! calculated in the limitn→0. The solid line: the
real part of the collisionless plasma conductivity~24!; the dotted
line: the real part of plasma coductivity~23! calculated in the limit
n→0; the dashed line: the imaginary part of the collisionle
plasma conductivity; the dashed-dotted line: the imaginary par
plasma conductivity~23! calculated in the limitn→0.
one obtains from Eqs.~30! and~31! well known nonlocality
parameterL introduced in~@1,13#!

L5S vpvT

c D 2 v

~v21n2!3/2
. ~33!

The expression~32! is valid, however, only in the limit when
the effective collisional frequencyn does not depend on th
electron velocity. It has been pointed out in Ref.@8# that for
the velocity dependent collisional frequencyn(v) the ex-
pression~32! does not provide an adequate description of
electron conductivitys. In the latter case, more general e
pression

s52
4pne2

3T S m

2pTD 3/2E
0

` v4exp~2mv2/2T!dv
iv2n1~v !

.

~34!

has to be used for evaluation of the local conductivity. R
spectively, the more general expression~34! has to used in
Eq. ~31! to evaluate the characteristic wavelengthk. The
parametersz ~25! with k calculated by using the local con
ductivity s from ~34! and L ~33! are plotted in Fig. 7 as
functions of the electron energy for the same values of
electron and neutral atoms density and frequency of the
ternal field. As one can see there is a substantial differe
between these two parameters. The parameterL consider-
ably overestimates the nonlocality region for this particu
case of argon gas.

s
f

FIG. 7. The nonlocality parametersz andL vs temperature for
the neutal atom densityN51015 cm23, electron densityne

51012 cm23, and the frequency of the external electric fieldv
56.78 MHz. The solid line representsz and the dotted line repre
sentsL.



io
e
m
on

n-

ur
to

e

ga-
ven
c-
nu-

gas

era-

lec-
e

el of
ion.
de-

ex-
n-
es-
ads
rate
one

o
utr

n

ce

y
le

:

972 PRE 58E. FURKAL, A. SMOLYAKOV, AND A. HIROSE
V. SURFACE IMPEDANCE OF THE SEMI-INFINITE
WEAKLY IONIZED PLASMA

In this section we analyze the electric field penetrat
into a semi-infinite plasmax.0 and calculate the surfac
impedance when the spatial motion of electrons beco
important. Assuming the specular reflection of the electr
at the boundaryx50, the profile of the electric field in a
semi-infinite plasma is given by@26#

Ez~x!52 i
v

pc
By~10!E

2`

` exp@ ikx#dk

k224p ivs~v,uku!/c2
.

~35!

The surface impedanceY is defined as

Y5
Ez~0!

By~0!
52 i

v

pcE2`

` dk

k22 i4pvs~ uku,v!/c2
, ~36!

wheres(uku,v,T) is the Fourier component of plasma co
ductivity.

The nonlocality parameterz shows that in both limits of
low and high frequency as well as low and high temperat
cases the penetration of the electromagnetic waves in
plasma can be described as a classical skin effect~exponen-
tial decay of an electric field inside of a plasma! and the
surface impedance can be calculated by integrating the
pression~36! with the conductivity given by Eq.~34!, which
finally yields @27#

FIG. 8. The surface impedance vs the electron energy. The s
line: the real part of the system’s surface impedance for the ne
atom and electron densities ofNat51015 cm23, ne51012 cm23;
the dashed line: the imaginary part of system’s surface impeda
for the neutral atom and electron densities ofNat51015 cm23, ne

51012 cm23. The dotted line: the real part of system’s surfa
impedance for the neutral atom and electron densities ofNat

51016 cm23, ne51012 cm23; dashed-dotted line: the imaginar
part of system’s surface impedance for the neutral atom and e
tron densities ofNat51016 cm23, ne51012 cm23. The electric
field frequency isv56.28 MHz.
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8ps
. ~37!

For the nonlocal case (z.1) however, the formula~37! is
not applicable and one has to solve the problem of propa
tion of the electromagnetic wave, when the current at a gi
point is determined by the field distribution within the ele
tron free path distance. The electric field and impedance
merically calculated from Eqs.~36! and ~35! are shown in
Figs. 8 and 9. In the local casez<1 the electric field ampli-
tude monotonically decays with the distance~approximately
as a damped exponent!. For the nonlocal casez.1, on the
contrary, the nonmonotonic field decay occurs. For the
pressures of the order of 1022 Torr the system’s surface
impedance becomes a nonmonotonic function of temp
ture, which is the result of the Ramsauer effect.

VI. CONCLUSIONS

In the present paper, we have considered nonlocal e
tron kinetics in a weakly ionized plasma subject of the tim
and space dependent electric field when the main chann
electron scattering is the electron-neutral atom interact
Since the differential cross section of electron scattering
pends on the poloidal angle, the collision integralC( f ) can-
not be presented in the local formC( f )52n(v) f (r ,v,t). In
this case the perturbed electron distribution function is
panded in the series of spherical harmonics. In low collisio
ality regimes effects of electron thermal motion becomes
sential so that the higher harmonics are important. This le
to the infinite system of coupled equations for the sepa
harmonics. We have developed a procedure that allows
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FIG. 9. The amplitude of the electric fieldE as a function of the
distancex for different values of parameterz. The solid line:j
50.9 (Nat51015 cm23, ne51012 cm23,v56.78 MHz, Te

50.5 eV); the dotted line: j55.2 (Nat51015 cm23, ne

51013 cm23, v56.78 MHz, Te51.0 eV); and the dashed line
j530.3 (Nat51015 cm23, ne51014 cm23, v53.89 MHz, Te

50.6 eV).
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to solve this infinite hierarchy in terms of the continued fra
tion and found a finite parametric representation for this c
tinued fraction. Unlike the two-term approximation, whic
only accounts for the first termf 1 in the spherical modes
expansion, the approach developed in the present paper
to a space and time dependent electron distribution func
that describes electron kinetics when the electron’s mean
path is comparable to or exceeds the characteristic le
scale of an external electric field inhomogeneity. The dev
oped approach uniformly describes the low and high co
sionality regimes and can be applied to a wide class
electron-neutral interaction processes with an angular de
dence of the differential cross sections, in particular, for in
gases exhibiting the Ramsauer effect. The electron distr
tion function obtained in this paper was used to find
nonlocal conductivity and the surface impedance of a se
infinite plasma and to analyze the anomalous penetratio
the electric field into argon plasma. Unlike the local condu
tivity, which leads to the exponential~local! decay of the
electric field, the nonlocal conductivity leads to nonmono
nous dependence of the amplitude of the electric field on
penetration depth~anomalous skin effect!.

It is shown that the Ramsauer effect manifests itself in
nonmonotonic behavior of the impedance for small tempe
tures and becomes noticeable for the gas pressures o
order of 1022 Torr. We have introduced the nonlocality p
rameterz, which determines the boundary between the loc
z<1, and nonlocal,z.1, regimes. The approach develop
in this paper can also be extended to analyze the nonl
effects in the thermal conductivity.
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APPENDIX A: APPROXIMATE EXPRESSION
FOR THE CONTINUED FRACTION

The continued fractionH1 has the form

H1511C2/11C3/11C4 /•••. ~A1!

The Cl coefficients are

Cl5
~ l 221!k2v2

~4l 221!~ iv2n l !~ iv2n l 21!
, ~A2!

where n l is given by Eq.~21!. For large l coefficientsCl
converge to a constant

Cl5
1

4

k2v2

~ iv2n`!2
5

1

4
x2, ~A3!

wherex5kv/( iv2n`). For constant value ofCl the follow-
ing identity holds true:
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x2

11 . . .

. ~A4!

Keeping a few first terms exact and replacing the rest w
the approximate expressionCl.x2/4 the functionH1 can be
represented asymptotically

H1
N511C2/11C3/11•••1CN/11

x2

4Y11
x2

4Y11•••.

~A5!

Then

H1
N511C2/11C3/11•••1CN/11~A11x2/221/2!.

~A6!

ApproximatingC3 and higher coefficients by an expressio
~A3! and using expansion~A4!, one finds forH1 @Eq. ~A1!#

H1.11
C2

11
1

4

x2

11
1

4

x2

11
1

4

x2

11•••

511
2

5

k2v2

~ iv2n2!~ iv2n1!~A11k2v2/~ iv2n`!211!
.

~A7!
The accuracy of the expression~A7! can be improved by

approximatingC4 and higher coefficients by an expressio
~A3!, whereasC1, C2, and C3 are calculated according t
Eq. ~A2!.

APPENDIX B: THE DIFFERENTIAL CROSS SECTION
OF ELECTRON-NEUTRAL ATOM SCATTERING

The differential cross section of the electron neutral at
interaction is given by

ds

dV
5u f ~u!u2, ~B1!

wheref (u) is the scattering amplitude. The scattering amp
tude can be expressed in terms of the phase shiftsd l @28#:

f ~u!5(
l 50

`
1

2ik
~2l 11!~e2id l21!Pl~cosu!, ~B2!

wherek is the electron wave number, andPl(cosu) are Leg-
endre polynomials. If the ground state of the atom does
have a permanent electric quadrupole moment~which is the
case for rare-gas atoms!, the leading term in the electron
atom interaction potential is of the polarization type@29#.
The solution of the Schrodinger equation with the polariz
tion potentialV;1/r 4 gives the values of the phase shif
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~and, consequently, the differential cross section! that de-
scribe the experimental data only for low energies~less than
0.1–0.2 eV for argon gas!. For higher electron energy, th
interaction potential between an electron and an atom d
ates from the polarization form, so that the higher ord
terms in the multipole expansion (1/r 6, . . . ,etc.! of the inter-
action potential become important. According to the mo
fied effective range theory@29# the phase shifts can be rep
resented as a series in theka0 parameter~which is the
measure of the energy of the incident electron!. Coefficients
of this expansion are chosen to fit the experimental d
Following this procedure O’Malley@18# has obtained the
following expressions for the phase shifts:

tando52Lk2
pbk2

3a0
2

4

3a0
bLk3ln~ka0!1Dk31O~k5!,

~B3!

tand15
p

15a0
bk21A1k31O~k4!, ~B4!

tand l5p@~2l 13!~2l 11!~2l 21!a0#21bk21O~k4!,

for l .1. ~B5!

where for argon gas

L521.7a0 , b511a0
3 , D549.368a0

3 , A1528a0
3 .

~B6!

The expressions given by Eqs.~B3!, ~B4!, ~B5! provide a
good fit for the electron-argon atom cross sections in
energy range between 0 and 0.7 eV.

To extend these expressions into the higher energy re
we introduce the higher order terms in the modified effect
range theory expansion:

tand052Lk2
pbk2

3a0
2

4

3a0
bLk3ln~ka0!1Dk31(

l 54

a

b lk
l ,

~B7!

tand15
p

15a0
bk21A1k31(

l 54

m

g lk
l , ~B8!
i-
r
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tand25
p

105
bk21(

l 52

d

j lk
2l , ~B9!

tand l5p@~2l 13!~2l 11!~2l 21!a0#21bk2, l .2.
~B10!

New coefficientsb l , g l , and j l are chosen to fit the experi
mentally measured phase shifts@21# to give

b452900.1a0
4 , g45223.287a0

4 , j 250.77a0
4,

b5518121.4a0
5 , g55354.605a0

5 , j 350.85a0
6,

b652150462.988a0
6 , g6522386.8a0

6,

b75687021.5a0
7 , g759514.9a0

7,

b8521938761.7a0
8 , g85223018.38a0

8,

b953533198.63a0
9 , g9534197.286a0

9,

b10524174116.25a0
10, g1052305311.53a0

10,

b1153090292.45a0
11, g11515039.7a0

11,

b12521303452.58a0
12, g12523141.58a0

12,

b135239014.83a0
13.

Then, the scattering amplitudef (u) and differential cross
sectionds/dV are
f ~u!5
1

k (
l 50

`

~2l 11!d l Pl~cosu!5 f ~u!5Â2
pbk

2a0
sin

u

2
1B̂P1~cosu!1ĈP2~cosu!, ~B11!

ds

dV
5u f ~u!u25ÂÂ* 2

pbk

2a0
$Â1Â* %sin

u

2
1$ÂB̂* 1Â* B̂%P1~cosu!2

pbk

2a0
$B̂1B̂* %sin

u

2
P1~cosu!1

p2b2k2

4a0
2

sin2
u

2

1B̂B̂* P1
2~cosu!1ĈĈ* P2

2~cosu!1$ÂĈ* 1Â* Ĉ%P2~cosu!2
pbk

2a0
$Ĉ1Ĉ* %sin

u

2
P2~cosu!

1$B̂Ĉ* 1B̂* Ĉ%P1~cosu!P2~cosu!. ~B12!
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Here P1(cosu), P2(cosu) are the first and second orde
Legendre polynomials,

Â5
eid0

k
sind01

pbk

3a0
, ~B13!

B̂5
3eid1

k
sind12

pbk

5a0
, ~B14!

Ĉ5
5eid2

k
sind22

pbk

21a0
. ~B15!
d

rce

lin
The expansion

sin
u

2
522(

l 50

`
Pl~cosu!

~2l 13!~2l 21!
~B16!

was used in derivation of formulas~B11! and ~B12!. The
differential cross section~B12! gives a very good description
of the electron scattering by the argon atom in the ene
range from 0 to 10 eV. This can be extended to even hig
energies by including the next order terms in the expans
for the phase shifts.
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