PHYSICAL REVIEW E VOLUME 58, NUMBER 1 JULY 1998

Nonlocal electron kinetics in a weakly ionized plasma
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Electron dynamics in a time dependent inhomogeneous electric field in a weakly ionized plasma with elastic
electron-neutral collisions is analyzed. We consider the most general ordering when the electron mean free
pathure/ v, is arbitrary with respect to the characteristic length s&al® of the electric field, and frequency
o of the electric field is arbitrary with respect to the electron collisional frequencyw~ v.~kuv,. In this
case the standard two-term approximation is not valid and higher order spherical harmonics in the perturbed
electron distribution function should be taken into account. This results in an infinite hierarchy of coupled
equations for angular harmonics that can be solved in the form of the infinite continued fraction. This method
is easily generalized for a wide class of scattering cross sections with angular dependencies. The developed
approach uniformly describes both log¢atrongly collisional and nonlocal regimes. As an example, a closed
form of the perturbed electron distribution function is found for the argon gas with nonmonotic dependence of
the collisional cross section as function of ene(Bamsauer effeft The conductivity and surface impedance
of a semi-infinite plasma are calculated in different collisionality regimes, and anomalous penetration of the
electric field into such plasma is analyzed. The nonmonotonous behavior of the amplitude of the external
electric field inside of a plasma has been recovered for the nonlocal £za<sk) ([S1063-651X98)06407-1

PACS numbefs): 51.50:+v, 51.10:+y, 52.20—, 52.50—b

[. INTRODUCTION The traditional procedure to solving the Boltzmann ki-
netic equation for electrons is to expand the electron distri-
Electron transport in an external electric field in a weaklybution function in a series of spherical functions and then
ionized plasma plays a fundamental role in gas dischargtuncate this representation retaining only a certain number
physics and its applications, in particular, for a variety ofof terms[7]. This series expansion is equivalent to the ex-
plasma sources used in science and technology. In thgansion of the distribution function in the parameter
present paper we consider the electron conductivity of a lovkv/(i w—v) wherek is the wave numbew is the frequency
temperature plasma in a time dependent nonuniform electrief the external electric fieldy is the collision frequency, and
field when the main mechanism of electron scattering is elas: is the electron velocity. Often, the so-called two-term ap-
tic collisions with neutrals and analyze nonclassieg@loma- proximation[3,8,9 is implemented to solve the Boltzmann
lous) penetration of the electric field into in a situation when equation. The applicability of the two-term expansion to the
effects of electron thermal motion are important. problem of the electron conductivity is limited to the case
We are interested in a situation when the electron meawhen the parametéw/(iw—v) is sufficiently small, i.e.,
free path is not small compared to the characteristic timéhe electron motion is strongly collisional> w, v>kv+, or
scale of the external electric field inhomogeneity, and thehe oscillation frequency is largeys>v,w>kv+. In this ap-
electron collisional frequency is not necessary large comproximation, the perturbed distribution function and, respec-
pared to the characteristic frequency of the electric field ostively, the electron conductivity do not depend on the wave
cillations. For such conditions effects of the thermal electrorvectork. Thus, the electron conductivity is a local quantity
motion become important so that electron conductivity be-and does not take into account the thermal electron motion. It
comes a nonlocal operator both in space and in {ilng].  is worth noting also that the two-term approximation does
This modifies the mechanism of the electric field penetratiomot describe higher order moments such as electron heat flux
into a plasma that is no longer local but rather becomes norwhich is important for the problem of anomalous heating
local. It is usually referred to as an anomalous skin effect10,11. The two-term approximation can be further im-
[3,4]. These effects have been observed experimentally iproved by including a few more terms in the spherical har-
gas dischargel$,6]. They are becoming increasingly impor- monic expansiofil2]. We develop an approach that includes
tant as gas discharges for plasma processing and lightingpmplete infinite hierarchy of spherical harmonics and al-
move toward the lower pressure regimes. In this paper wéws one to calculate the perturbed distribution function for
develop an approach that allows one to uniformly describerbitrary values of the parameter/(i w — »). In present pa-
both strongly collisional and collisionless regimes. Such arper we concentrate on the nonlocal effects in the perturbed
approach is especially important for the description of thedistribution function due to the external electric field and
electron transport in inert gases where the differential croseeglect effects of inhomogeneity of the equilibrium electron
section of the electron-neutral atom interaction exhibits nondensity due to the equilibrium ambipolar potential. Thus we
monotonic behavior with the electron energlie Ramsauer neglect effects of energy relaxation and associated nonlocal
effech) so that electrons of different energies could be ineffects due to particle trapping in the ambipolar potential of
different collisionality regimes. a bounded plasma coluni3,9]. The latter effects can be
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FIG. 1. The differential cross section of scattering of an electron  FIG. 2. The momentum transfer scattering cross section of an
on argon atom vs the scattering angle for different electron enerelectron on argon versus the electron ene@y.Naskanishiet al.
gies. The solid, dotted, dashed, and dashed-dotted lines represdRef. [23]); —: present results.
the electron energy of 0.1, 1, 5, and 10 eV, respectively.

time-varying and inhomogeneous electric field is
described within the two-term approximation and are not
considered in this paper. ﬂ+v- of eE(r,Y) ‘ a_f:C(f) @)

Nonlocal electron conductivity and the associated anoma- at ar m v '
lous skin effect have also been investigafé¢B,13,14 by
solving the Boltzmann kinetic equation with simplified BGK HereC is the collisional integral of interaction between elec-

type collisional operator in the form trons and atoms given HyL5]

C(f)=—v(v)f, &Y

do

Cih)= [ vl -ty gadipa0, (@)

wherev(v) is the effective collisional frequency. Using Eqg.

(1) one can solve the linearized kinetic equation for pertur-whereuv, is the relative velocity between electrons and at-

bations without making the expansion in spherical harmonems, f, f; andf’, f; are the electron and neutral atom dis-

ics. Such an approximation may be used for electrons of veryribution functions before and after the collisicthg/dQ) is

low energies where the differential cross section of thethe differential cross section of electron-neutral collisions. In

electron-atom interaction does not depend on the electrothe present paper we neglect the electron-electron and

energy and is isotropic in space. At higher energies of elecelectron-ion interactions, since the neutral atom density is

trons the cross section of the electron-neutral interaction bezonsiderably higher then that of the electrons and ions.

comes velocity dependent and anisotropic in space. This is We neglect the effects of energy transfer between elec-

usually the most typical situation for electron scattering introns and atoms because of the large mass difference be-

inert gases with the Ramsauer effect. In this paper we cortween the two species. Thus atoms are motionless, and their

sider the realistic case when the differential cross section idistribution function is given by

anisotropic and approximatiofi) is not valid. As an ex-

ample we use argon gas where the Ramsauer effect manifests f1=F1=Nd&(p1x) 8(P1y) 8(P1,), (4)

itself in a sharp decrease in the magnitude of the transport

cross section as the energy of electrons increases. In the r¢hereN is the neutral atom density. Substituting the expres-

gion of the minimum energy, the spatial motion of electronssion (4) into (3) we get

may become important even if it can be neglected for other d

energy ranges. C=Nf [F(L V)= f(tr T g d. )

Il. SOLUTION OF THE ELECTRON KINETIC EQUATION
IN THE INHOMOGENEOUS AND TIME DEPENDENT

ELECTRIC FIELD

As mentioned above we neglect the effects of spatial dis-
tribution of the ambipolar potential, so that the electron equi-
librium functionFy(v) can be taken in the Maxwellian form

The Boltzmann kinetic equation for the electron distribu-with a uniform density. Under the influence of the external
tion function in a weakly ionized plasma with the external electric field, the electron distribution function departs from
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FIG. 4. The complete continued fractidt, computed numeri-
cally and the approximatiofA7) as the function of th&v/w pa-
rameter forv, /w=0.1. The solid line: the real part of the complete
continued fractiorH; the dotted line: the real part of the approxi-

o o . mation (A7); the dashed line: the imaginary part of the complete
the equilibrium so that the total electron distribution function ¢gontinued fractiorH,; the dashed-dotted line: the imaginary part of

can be represented in the fofm] the approximatior(A7).

FIG. 3. The effective collision frequencies, v,, andv,, versus
the electron energy. The neutral atom density i$°1€m 3. The
solid line represents;, the dottedr,, and the dashed., .

F(V,r,)=Fo(0)+ X fim(0)Y m(6,4)€® Y (6)  sume that the electric field is in tredirection, E=EZ, and
o its variation is in thex direction, k =kx.
wherev=|v|, f| ,(v) is a function of the absolute value of ~ Substituting Eq(6) into Egs.(5) and(2), and expanding
electron velocity,Y, (6, ¢) is the spherical harmonic func- the electric field in Fourier series, one gets in the linear ap-
tion, andF is the Maxwellian distribution function. We as- proximation

eE(w,k)  dF,

—i0 2 £ m(0) Y1 (0, 6) +iKuSiNGCOSG D, 1 m(v) Y1 m( 0, )~ —— €080 === X wifym(0) Y m(0,0),
| | | @
wherev, is thelth order collision frequency defined thy]
do(v,0)
V|(v)=NvJ [1— P|(COS€)]d—QdQ, (8)

whereP,(cost) are the Legendre polynomials. If the differential cross section does not depend upon the poloidal scattering
angled, then allv, are equal, except fary. The characteristic frequenay, describes the energy relaxation that is neglected
here due to large mass difference between the electron and neutral atepascdinst for alll then there is no need to expand
the electron distribution function in the series of spherical functions and one can solve the Boltzmann kinetic equation with the
collision term given by Eq(1).

If the differential cross section is a function 6f Eq. (7) leads to coupled equations for different spherical harmonics.
Multiplying Eq. (7) by Y{"(6,¢) and integrating over the solid angle we obtain

. 1 47 eE(w,k) 9Fq
—Ia)f|’m+ Elkvrhm— ?Tél,lé\m,oxz_vlﬁ,m’ (9)

where
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~Ji=m+D)(1-m+2) (I-m)(I-m—1) (I+m—1)(I+m)
Fim= @+n@+3 et N G-y T N s e

\/(| +m+2)(1+m+1)
B (21+1)(21+3)

fiiimet- (10

The standard two-term approach consists in retaining if®anly the first termf 5, and neglecting all the higher angular
harmonics. This is justifiable in a strongly collisional limit, but in weakly collisional regimes effects of the higher angular
harmonics of the distribution function become important. These effects can be accounted for by a direct solution of the infinite
system(9) for f; o(w,k,v) in the form

3 dmeE(w,k) dF, 1
frd ko) ==\ 5 S o v (o) Hi (0 K@) (1)

The effects of the higher-order spherical harmonics are included in the continued fraction

H|(v,k,w)=1+C|+1/(1+C|+2/1+C|+3/'-~), (12)

with coefficients

B (12— 1)k??
(2= (ie—m)(io—v_1)

C (13

The similar method of incorporating of the higher order spherical harmonics was ugkg} 11| for the problem of electron-
ion collisions.

To find an expression for the perturbed electron distribution function, one has to calculate the continued fraction
H(v,k,®), which in turn requires the knowledge of th#h order collision frequencies,. If the electron-neutral atom
interaction is of the polarization type, which is assumed in the present paper, then the collision frequap@ly converges
to a constant value

vo(v)=limy(v). (19

| o0
In this case the continued fractidh, (v,k,w) can be approximated bisee Appendix A
k2U2

2
Hiy(w.kv,v)=1+ = ’ o
wwko,v) +5(ia)—lfz(v))(iw—1/1(0))(\/1+k2v2/(iw—Voo(v))z“Ll) "

where

do(v,0)
Vl(U)ZNvf (1—C030)d—QdQ, (16)
3 do(v,6)
Vz(v)zzNUf (1—00529)Tdﬂ. (17)

Substituting Eq(15) into Eq. (11) we obtain the expression for the electron perturbed distribution function in the form
-1

frok,w,v,0)=— . (18

eE(w,k) 9Fg  cosf <1+E k%2
m v io—vi(v) Sliw—vy(v)](iw—v1(v)(N1+ K20 [iw—v.(v)]>+1)
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3.0

electrons and the neutral polarizable syst@toms follows
from the so-called modifiedatomig effective range theory
[18].

The differential cross sectio(B12) is a function of the
electron velocityv and the scattering anglé. For some
gasege.g., argoi the scattering length is negative and the
transport cross sectiow,, defined as

g
ol
=—1] (1—cosh)do
4
T .. BB* CC*
nernl
pomzr - =AA* + +
0.0 T . 3 >
’ 0.0 5I.0 10.0
kv/tw
FIG. 5. The complete continued fracti¢fy computed numeri- 2wk . AsA*L 187 Bk B+ B+
cally and the approximatiofA7) as the function of th&uv/w pa- 5 a { A"} 10%a { }
rameter forv, /w=5. The solid line: the real part of the complete
continued fractiorH; the dotted line: the real part of the approxi-
mation (A7); the dashed line: the imaginary part of the complete Bk
continued fractiorH ;; the dashed-dotted line: the imaginary part of 2m *1_ o * *
the approximatior{A7). 10& {C+ ¢ } {AB +A B}

2 L 7_rzﬂzkz
— #{BC*+B*C}+ = — (19

In the limit, k= 0 we obtain the local electron distribution 15 6 ag

function from Eq.(18), investigated in Ref[8]. We have

parametrized the perturbed distribution functigr by three

coIIi;ionaI frequenci(_es'l, V2, and_vw. As_shown i_n the next pas a minimum ab=v, [19] where

section, this approximation satisfactorily describes the par-

ticular case of electron scattering in the argon gas. The pa-

rametrization(15) can be easily generalized for the arbitrary 12 La

dependence of the collisional cross sectiam(v,6)/dQ}, Ve=— O_ (20)

provided that the conditiofiL4) is satisfied. It is worth noting STmp

that both analytical representation and results of computer

modeling and/or experimental data can be used for . )

do(v,6)/dQ to determine the parameters, v,, andv., re- The shz_;\rp decreas_e in the transport cross section of elec-

quired for Eq.(18). tron atom interaction is known as the Ramsauer effect. As an

example we shall use argon gas for the present calculations.
The atomic polarizability and the scattering length of the
argon atom ar¢18,20 B=11.1a3, L= —1.7a,, where g is
the Bohr radius, and the coefficiengs, v, j, (given in Ap-
lll. EFFECTIVE COLLISIONAL FREQUENCIES pendix B .are.chosen to fit the experimental df24] for the
AND RAMSAUER EFFECT IN ARGON phase shifts in the energy range from 0 to 10 eV. The an-
gular dependence of the differential cross section for differ-
To calculate the perturbed distribution functitB) one  ent energies given by EgB12) is shown in Fig. 1. For the
has to specify the form of the collisional integral and thenenergy range between 0 and 10 eV, the expres&iir?)
calculater,. As noted before, in this paper we consider thegives a very good fit to the differential cross section of the
elastic electron-atom polarization interaction as the mairelectron-argon atom interaction that was obtained experi-
channel of electron scattering. For the incident electron enmentally[22,24,25 and theoreticallyf22,24,29.
ergy in the range between 0 and 10 eV, the differential cross The transport cross sectiqt9) of electron scattering in
section of the electron-atom interaction can be represented @rgon as a function of the incident electron energy is shown
the form (B12) (see Appendix B The structure of the en- in Fig. 2. Using the definition of théth order collision fre-
ergy expansion of phase shifts for the interaction betweeguency(8) and(B12) one obtains
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Figure 3 shows the effective collision frequencigs v,, andv., versus the electron energy. One can see the nonmonotonic
behavior of the effective frequencies with the electron energy, which is typical for the Ramsauer effect. With an explicit form
for the effective collision frequencig®1) we can readily calculate the continued fractidp and subsequently the perturbed
electron distribution function. The approximatitib) reasonably well reproduces the exact continued fra¢ti@nin the wide

range of collisionality regimes. The comparison of the full continued fradti® computed numerically with the approxi-
mation (15) is given in Figs. 4 and 5 for different values of the parameter w.

IV. NONLOCAL PLASMA CONDUCTIVITY

The Fourier component of the plasma conductivity is defined from the relation

j(w,k)=—ef vzf1’0d3v=0(w,k)E(w,k). (22
Using Eq.(18) one obtains
‘ __47-rne2/ m )3’2f°°v4exp(—mv2/2T){ +E k?v? .
=" 2T Jo T o m) |7 5 [iw—vp(0)][iw—v1(0) 1(VI+ K02 (i0— va(0))2+1)

(23

whereZ(x) is the plasma dispersion function
The effective frequencies defined in this paper reproduce

well theoretical and experimental data in the energy region 1 (= exp(—t?)
from 0 to 10 eV. Integration in the expressi@B) is done Z(x)=— Ti—x dt.
over the entire velocity region from 0 te. Since the main e

contribution to the integral in Eq23) come from velocities , : :
that are close to the thermal, the error introduced by elec.l—n Fig. 6 we compare the exact analytical res@#) obtained

trons with energies higher than 10 eV is exponentially smal n t_he coII|S|onI_ess regime with our approximatiGg) in the
for plasmas with electron temperatufg< 10 eV. imit »—0. Th!s comparison demonstrates that !;‘_2,’13) ac-

The electron plasma conductivity given by Eq.(23) is a curately (_jescnbes t_he plasma response for a wide range of
complicated function ofs andk. Converted back to a con- the collisionality regimes and a wide range of values of the
figuration space andt, o(z,t) becomes a nonlocal integro- Parametew/kvr. _ _
differential operator in space and time. It means that the The second term in brackets in expressi@f) describes
conductivity is a function of the rf field throughout the entire Nonlocal effects due to a spatial dependence of the conduc-
skin layer and as will be shown in the next section it causediVity operatora. One can introduce the following criterion

the nonmonotonic behavior of the electric field inside of awhen the nonlocal effects are important:

plasma. ) 2
For the case whem=0, the plasma conductivity can be kT ‘ -1
easily calculated from the collisionless kinetic equation giv- * | j 4, — ) (jw— vy){[ 1+ K202/(iw—1..) 2]+ 1}‘ :
ing (25
2
ol w,K) = — | @pe Z(i) , (24  Qualitatively we can assume thag=v,= v... Then expres-
dmkvr \ kot sion (25) can be rewritten as
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FIG. 6. The collisionless plasma conductivif84) and plasma
conductivity (23) calculated in the limitv—0. The solid line: the
real part of the collisionless plasma conductiviB4); the dotted
line: the real part of plasma coductivit23) calculated in the limit
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FIG. 7. The nonlocality parametefsand A vs temperature for
the neutal atom densityN=10' cm~3, electron densityn,
=10' cm 3, and the frequency of the external electric fieid
=6.78 MHz. The solid line representsand the dotted line repre-

v—0; the dashed line: the imaginary part of the collisionlesssentsA.
plasma conductivity; the dashed-dotted line: the imaginary part of

plasma conductivity23) calculated in the limitv—0.

k22

v
> [1+ K202 (0?4 1) Y2+ 1, (26)
W+ vy
Introducing a parametes
_ et o
7 w?+ V%
one obtains from Eq.26)
n>(1+ 77)1/2+ 1. (28
Thus the nonlocal effects are important for
n>1 (29
or
k%2
7= em V2> 1. (30
1

The characteristic wave vectkrcan be approximated by the
inverse skin depth in the local case

k=6"'=Re4mi wolc?)'?, (31
whereo is the local conductivity. By using the classical local
expression for the electron conductivity

2

_ p
7 Aa(v—iw)’ (32)

w

one obtains from Eq€430) and(31) well known nonlocality
parameterA introduced in([1,13])

.

The expressiof32) is valid, however, only in the limit when
the effective collisional frequency does not depend on the
electron velocity. It has been pointed out in R that for

the velocity dependent collisional frequeneyv) the ex-
pression32) does not provide an adequate description of the
electron conductivityr. In the latter case, more general ex-
pression

2
(,L)pU T) w (33)

C (02+ 12)¥2

47-rne2/ m
3T \24T

o= —

) 3’2f°° vexp(—mv?/2T)dv

0 lo—v(v)

(39)

has to be used for evaluation of the local conductivity. Re-
spectively, the more general expressi@4) has to used in
Eq. (31) to evaluate the characteristic wavelendth The
parameterg (25) with k calculated by using the local con-
ductivity o from (34) and A (33) are plotted in Fig. 7 as
functions of the electron energy for the same values of the
electron and neutral atoms density and frequency of the ex-
ternal field. As one can see there is a substantial difference
between these two parameters. The paraméteonsider-
ably overestimates the nonlocality region for this particular
case of argon gas.
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FIG. 8. The surface impedance vs the electron energy. The solid 0000 0.004 O'OOSX (ng')mz o0 0020
line: the real part of the system’s surface impedance for the neutral
atom and electron densities ;= 10" cm™3, n,=10" C_mfe’? FIG. 9. The amplitude of the electric fiel as a function of the
the dashed line: the imaginary part of system’s surface impedancgistancex for different values of parametaf. The solid line: &
for the neutral atom and electron densitiesNgf=10" cm™%, n. =09 (N,=10' cm 3, n,=10" cm 3,w=6.78 MHz, T,
=10" cm2. The dotted line: the real part of system's surface =05 ev): the dotted line: é=5.2 (Ny=10" cm™3, n,
impedance for the neutral atom and electron densitiesNgf =10 cm™3, »=6.78 MHz, T,=1.0 eV); and the dashed line:

=10" cm™®, n;=10" cm®; dashed-dotted line: the imaginary ¢=30.3 (N,=10' cm 3, n,=10" cm 3, w=3.89 MHz, T,
part of system’s surface impedance for the neutral atom and elec=0.6 ev).
tron densities ofN,=10" cm 3, n,=10 cm 3. The electric
field frequency isw=6.28 MHz. o
Z=(1-i)\/s— (37
V. SURFACE IMPEDANCE OF THE SEMI-INFINITE 8mwa

WEAKLY IONIZED PLASMA .
For the nonlocal case&/ 1) however, the formulé37) is

In this section we analyze the electric field penetrationnot applicable and one has to solve the problem of propaga-
into a semi-infinite plasma>0 and calculate the surface tion of the electromagnetic wave, when the current at a given
impedance when the spatial motion of electrons becomegoint is determined by the field distribution within the elec-
important. Assuming the specular reflection of the electrongron free path distance. The electric field and impedance nu-
at the boundaryk=0, the profile of the electric field in a merically calculated from Eqg36) and (35) are shown in

semi-infinite plasma is given by26] Figs. 8 and 9. In the local cage<1 the electric field ampli-
tude monotonically decays with the distare@proximately
o o exd ikx]dk as a damped expongnfor the nonlocal casé>1, on the
E,(x)=—i —By(+O)J 5 : 5 contrary, the nonmonotonic field decay occurs. For the gas
me ~=k*—4mwo(w,lk)/c pressures of the order of 18 Torr the system’s surface

(35 impedance becomes a nonmonotonic function of tempera-

ture, which is the result of the Ramsauer effect.
The surface impedance is defined as

VI. CONCLUSIONS

B,(0) 'mc

E,(0) Lo dk )
= = j (36) In the present paper, we have considered nonlocal elec-

—=k?—i4mwo(|k,w)/c? tron kinetics in a weakly ionized plasma subject of the time
and space dependent electric field when the main channel of
wherea(|k|,»,T) is the Fourier component of plasma con- electron scattering is the electron-neutral atom interaction.
ductivity. Since the differential cross section of electron scattering de-
The nonlocality parametef shows that in both limits of pends on the poloidal angle, the collision integt4lf) can-
low and high frequency as well as low and high temperaturanot be presented in the local for@(f)= —»(v)f(r,v,t). In
cases the penetration of the electromagnetic waves into this case the perturbed electron distribution function is ex-
plasma can be described as a classical skin eféeqionen- panded in the series of spherical harmonics. In low collision-
tial decay of an electric field inside of a plasimand the ality regimes effects of electron thermal motion becomes es-
surface impedance can be calculated by integrating the exential so that the higher harmonics are important. This leads
pression(36) with the conductivity given by Eq.34), which  to the infinite system of coupled equations for the separate
finally yields[27] harmonics. We have developed a procedure that allows one
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to solve this infinite hierarchy in terms of the continued frac- 1

tion and found a finite parametric representation for this con- J1+x2=1+=

tinued fraction. Unlike the two-term approximation, which 2 14 E X

only accounts for the first ternfi; in the spherical modes 4 1 x2

expansion, the approach developed in the present paper leads 1+ - ——F———
: o : 4

to a space and time dependent electron distribution function 1+ =

that describes electron kinetics when the electron’s mean free 41+...

path is comparable to or exceeds the characteristic IengtIQ . i . .

scale of an external electric field inhomogeneity. The devel- eeping a_few first terms exac§ and replac_lng the rest with

oped approach uniformly describes the low and high coIIi-the approximate EXprE‘.‘SS'@zX /4 the functionH, can be

sionality regimes and can be applied to a wide class oféPresented asymptotically

electron-neutral interaction processes with an angular depen- X2 X2

dence of the differential cross sections, in particular, for inertH'l“z 1+ Cy/1+Cy/l+ - - - +Cp/1+ _/ 1+ — / 1+....

gases exhibiting the Ramsauer effect. The electron distribu- 4 4

tion function obtained in this paper was used to find the (AS)

nonlocal conductivity and the surface impedance of a semipan,

infinite plasma and to analyze the anomalous penetration of

the electric field into argon plasma. Unlike the local conduc-  HN=1 4 C,/1+Cy/1+ - - - + Cp/1+ (V1 +x%42—1/2).

tivity, which leads to the exponentidlocal) decay of the (AB)

electric field, the nonlocal conductivity leads to nonmonoto-

nous dependence of the amplitude of the electric field on thépproximatingC; and higher coefficients by an expression

penetration deptanomalous skin effegt (A3) and using expansio(A4), one finds forH; [Eq. (Al)]

It is shown that the Ramsauer effect manifests itself in the

nonmonotonic behavior of the impedance for small tempera- C,

tures and becomes noticeable for the gas pressures of thd1=1+

order of 102 Torr. We have introduced the nonlocality pa- 1+ =

rameter{, which determines the boundary between the local, 4 1 X

(<1, and nonlocal{>1, regimes. The approach developed 4 1 X

in this paper can also be extended to analyze the nonlocal 1+~

effects in the thermal conductivity.

2 k?v?
=1+—-— - - .
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APPENDIX A: APPROXIMATE EXPRESSION
FOR THE CONTINUED ERACTION APPENDIX B: THE DIFFERENTIAL CROSS SECTION
) ) OF ELECTRON-NEUTRAL ATOM SCATTERING
The continued fractiomd; has the form . . ]
The differential cross section of the electron neutral atom

Hy=1+Cy/1+Cy/l+Cyl-- - (A1) interaction is given by
do
The C, coefficients are T HOIR (BY)
(12— 1)k22 wheref(6) is the scattering amplitude. The scattering ampli-
C= ; - , (A2)  tude can be expressed in terms of the phase shiff&8]:
(A2=1)(io—v)(iw—v_,)
o1 _
where v, is given by Eq.(21). For largel coefficientsC, f(e)zlzzo m(m+1)(92'5'—1)P|(0050), (B2)

converge to a constant

wherek is the electron wave number, aRg(cosd) are Leg-
k2p2 1 endre polynomials. If the ground state of the atom does not
X2, (A3) have a permanent electric quadrupole monteitich is the
case for rare-gas atofshe leading term in the electron-
atom interaction potential is of the polarization ty[#9].
wherex=kv/(io—v,). For constant value df, the follow-  The solution of the Schrodinger equation with the polariza-

ing identity holds true: tion potentialV~1/r* gives the values of the phase shifts

l p—
4 (iw—v,)% 4
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(and, consequently, the differential cross segtitimat de-

scribe the experimental data only for low enerdiess than tans,= 105,8k2+ E jik?, (B9)

0.1-0.2 eV for argon gasFor higher electron energy, the

interaction potential between an electron and an atom devi- a2

ates from the polarization form, so that the higher order @nd=7[(21+3)(21+1)(21—1)ac] "Bk%, 1>2.

terms in the multipole expansion €%/ ... etc) of the inter- (B10)

action potential become important. According to the modi-

fied effective range theor)29] the phase shifts can be rep-

resented as a series in th&, parameter(which is the

measure of the energy of the incident elecirdoefficients

of this expansion are chosen to fit the experimental data. B4=—900.]%
. . . 4 01

Following this procedure O’Malleyf18] has obtained the

following expressions for the phase shifts:

New coefficientsB,, y,, andj, are chosen to fit the experi-
mentally measured phase shiffl] to give

ya=—23.28R5, j,=0.77a,

B2 4 , , ] Bs=18121.43, v5=354.60%3, j;=0.8%,
tané,= —Lk— 3a —3—a0,8Lk In(kag) + Dk°+0O(k>),
B3
B3 Be=—150462.9885, 5= —2386.85,
_ T 2 3 4
tand; = Toa; B2+ AK3+0(k%), (B4)

B,=687021.%), y;,=9514.9/,
tand, = 7[ (21 +3)(21+1)(21 — 1)ay] 1Bk2+ O(k*),

for 1>1. (B5) Bs=—1938761.35, yz=—23018.3&3,
where for argon gas
L=—178,, pB=11a, D=49.368, A,=8al. Bo=3533198.635, yo=34197.286y,
(B6)
The expressions given by Eq&3), (B4), (B5) provide a Bio=—4174116.28;°,  y;0=—305311.53°,

good fit for the electron-argon atom cross sections in the
energy range between 0 and 0.7 eV.
To extend these expressions into the higher energy region B11=3090292.48%,  y;,=15039.3%",
we introduce the higher order terms in the modified effective
range theory expansion:

7Bk 4 « B1,=—1303452.58%%, y,,=—3141.5&%,
tansy=— Lk— — — BLK3In(kap) + DK3+ >, BiK,
3a, 3a =4

(B7) B15=239014.83%°.
tans. = K2+ A K3+ K BS Then, the scattering amplitud¢d) and differential cross
171854, = ! E 7 B8 cectiondo/d are
1o . wBk 6 . .
f(e)= FE (21+1)6,P(cosh)=f(6)=A— Da sm§+BP1(cose)+CP2(cos¢9), (B11)
=0 0

20212 0

Sit =
(2) 2

—U=|f(6)|2=AA* - W—/ﬂ({A+A*}sin§ +{AB* +A*B}P,(cosf) — 77_,8k{|§+ B*}singP (cosh) +
dQ 2a, 2 ! 2a, 2 1

6
+BB*P l(cosa) +CC*pP 2(0050) + {AC* +A* C}Pz(cosa) - {C+ C*}sm— P,(cos6)

+{BC* +B*C}P;(cosf)P,(cosh). (B12)
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Here P,(cos), P,(cos) are the first and second order The expansion

Legendre polynomials,

A= e 5 Bk B13
—Tsm ot 3—ao, ( )
B= 3en S Bk B14
Tk M g (B14
&= 5€'% ins, TP B15
—TSII'I 2_2_13.0. ( )

0 = P,(cos6)
sy = 2.:20 (21+3)(21-1) (B16)
was used in derivation of formula@11) and (B12). The
differential cross sectio(B12) gives a very good description
of the electron scattering by the argon atom in the energy
range from 0 to 10 eV. This can be extended to even higher
energies by including the next order terms in the expansion
for the phase shifts.
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